7 B+ q' C v# V9 d5 Q钢架的强度及刚度是该铆接线设计的另一关键因素,因为该钢架原为F2000驾驶室总成所用,钢架允许所吊物重仅在0.5t以内,而车架最重在1.5~2t之间,故需对钢架进行改造加固,使其能承受2t的载荷,因此,如何将承受0.5t的钢架改造加固为能承受2t载荷的钢架成为需解决的焦点问题。经初步分析,我们决定在20号葫芦轨道工字钢上面用16号工字钢分段焊接加固,并为确定其加固后能承受2t的载荷特进行了力学理论计算。2 [- Z2 y4 X( K/ a1 a8 y
/ d- ?+ o8 t* D8 I4 |9 A5 s; v& m对最大弯矩、截面惯性矩、抗弯截面模量、最大弯曲应力及最终强度、刚度的计算证明,加固方案实施后,4台2t的环链葫芦可同时在此钢架单跨内行走,无任何安全隐患,因此,此方案可行。 0 `6 R/ K8 ]) \. v+ }& o 2 t4 v4 r: P% Q; U+ W; \在工艺布局过程中,为节省空间,我们还考虑减少发生器,例如在第三工位,既能铆接尾梁又能铆接中间支座,因此在图1中,3、4液压站可选用一机 拖双钳的液压站,使有限的加工场地尽量开阔,给工人创造一个好的加工环境,也减少了很多安全隐患。 ; M9 W9 ?' r6 |' h8 p/ L+ k) @2 t I
该铆接线在建成之后顺利投入生产使用,经现场跟踪测定车架加工时间符合最初理论分析,以K29车架为例,下线一辆份生产节拍由原来的25min提高为15min,生产效率提高了40%。双层轨动滑车与葫芦也没有出现干涉现象,双班日产车架也能达到50辆份以上。铆钳在使用完成之后能够自动恢复到原位,不会出现滑车碰撞葫芦的现象。目前,该车架铆接线正常使用没有出现过任何问题,为车架总成产能的提升起到较大作用。' w8 y( O. f( M8 Z X/ ], w
& s( B+ B- o# ^1 x6 u
对液压站布局的设想" z5 F o( \! v1 q$ l) X7 r
, s' c8 M) b; f: H& Y& n. x通过此次铆接线的建设,笔者就液压站的放置问题也产生了一些新的想法。目前,国内许多载重汽车公司所使用的液压铆接机(包括我公司车架生产线)基本为每一支铆钳配备一台液压站,在一条较复杂的长线上一般设有20~30多个铆接点,相应地就有20~30台液压站,因而占去了铆接线两侧的大量空间,使工人的操作空间变得很狭窄,并且故障发生率也非常高。某些工厂把液压泵站架设在铆接线的上空,但这对泵站维护、保养带来了非常多的不便,尤其一旦液压泵站漏油则会影响到下方的正常作业,因此采取这种架空的分散供油型式并不是上策,同时也加大了投资。假若能在铆接线上搞“全线集中供油控制”,即在一条线上,数十个铆钳由一台液压泵站集中供油控制,这将是一个经济效益好、故障率少的更现代化的生产方式。采取集中供油后,其铆接点处只有一个液压集成控制阀,其占地面积也大大减少,同时可大大改善操作工人的工作环境。/ V$ D. i: R0 F4 V4 i